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Chapter 1 !
b
.4'
“
INTRODUCTION ~
'
"
1.0 Introduction .
-
In the spectral estimation of signals one comes across a ;
problem when components of the spectral response are spaced il
w
closely together, and the problem is further complicated =
when the signal 1is noisy. There is a point up to which it ;
F
is possible to resolve two pulses that are placed closely ¢
together. Beyond this point it can only be done if some a ;
priori information is given about the signal. The point N
at which it becomes difficult without a priori knowledge o
can be obtained from the sampling theorem, and is given by ¥
,
T.B=0.5 (1.0-1) o
¢4
where the T represents the duration of time that the sig- ot
)
nal is observed, and B is the bandwidth of the signal. K
Equation (1.0-1) states that the 1limiting time-bandwidth :
product is equal %o 0.5. If the product is greater than X
X
0.5 it is possible to obtain a good estimate of the spe- iﬁ
4 X
ctrum even when nolse is present. On the other hand, if =
the product is less than 0.5 it is extremely difficult to ;
1 3
5
I\
Al



resolve two peaks that are spaced closely together. The

‘
l only way to be able to resolve the two peaks is to have
éh = knowledge about the signal. This knowledge can then be
‘Ei ;5 formulated to give one a set of 1linear eguations with
?? ” equality and inequality constraints. These equations along

n" 'v‘. n

with a minimizing procedure can be used to obtain or im-

prove the esimate. In this thesis we show a method to

.‘o'

N
- A
v

gy =

obtain an estimate of two <closely spaced pulses in the

)
3 B spectral domain when the time-bandwidth product 1is less
T Al
ij than 0.5. The knowledge that we assume 1is that there are
-’\d
N R .
%! ;« only two pulses in the frequency domain.
Ad
:::: €a
ff AR In signal processing there is a class of signals that one
J \*:
R - comes across having the property that they only exist for
\p; positive time. This class of signals are termed causal.
]
{E §§ If the signal is also real, then there is a special re-
A )
O T
<N lationship between the real ard imaginary parts of its
" Ez Fourier transform. The relationship that exists is that
5 \ . '
-:3 ~ the real and imaginary parts of the Fourier transform are
% '
<> related by the Hilbert transform. From this one need only
32 - know the real or imaginary part of the spectrum and the
f;% ) other part can be easily calculated. The dual to this is
"1 é; that the spectrum contains only real components for posi-
DS tive frequencies. Then the real and imaginary parts of the
. :::f
AOMRN time signal are related through the Hilbert transform.
4;; g; This type of time signal is given the name analytic. One
o
2 |
.j \{: J
." f
-
>
w7
,\
) N W S A A S A S S ) s DS A, WA A R B NI RN VLRGN S B S SN Y
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of the uses of ¢the Hilbert transform is in the area of
phase retrieval. The problem can be stated that given
only the modulus of a signal, whether it be in the time or
frequency domnains, determine the phase. Under the con-
ditions that the signals are analytic or causal, the
Hilbert transform holds between the modulus and phase. It
is a well &known fact that when determining the phase, if
the signal has zeros that occur in the upper half of the
complex z-plane, then the phase cannot be found. For this
reason processing of the modulus has to be performed before

or after the estimate c¢f the phase has been obtained.

1.1 Spectral Estimation of Two Pulses

When it 1is desired +to resolve two pulses spaced closely
together with a time-bandwidth product of less than 0.5,
more information has to be known a priori. The infor-
mation that we are given is that there are two pulses, and
this is all that is needed to resolve the two pulses. The
method of solution is based on knowing that two pulses in
the frequency domain corresponds to the sum of two cosines
in the time domain. Since we are using digital signal
processing methods where we are sampling the time function,
we can represent the two cosines in terms of their

Z-transform. From the Z-transform we can obtain a set of

linear equations plus a set of inequazlities based on the
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coefficients of the 2Z-transform. These equations are then

used with mathematical programming techniques to provide an
optimal transfer function to describe the two pulses that
originally smeared into one when the time-bandwidth prod-

uct is less than 0.5.

1.2 Modified Hilbert Transform

Let wus consider the evaluation of the Hilbert transform.
It involves the convolution of a signal with a kernel

given by

K=1/%. (1.2-1)-

If numerical methods are used to evaluate the convolution,
then difficulties arise because the kernel has a singu-
larity which makes certain values go to infinity during
its evaluation. To overcome this difficulty, the fast
Fourier transform algorithm has been used to evaluate the
convolution. In certain applications this leads to anoth-
er problem. One may find that the frequency spread of the
function times the kernel exceeds the fregquency domain
defined by the inverse of the sampling distance, and con-

sequently the Fourier +transform is distorted. In this

way, the computer evaluation of the convolution integral

yields large errors.
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A new form of the Hilbert transform is given whose kernel
does not have the problems that exist for the other form
of the Hilbert transform. This new Hiltert transform will
be aprlied tp_phg.phaée:retrieval problem to show that simi-

lar results can be obtained.
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Chapter 2

ESTIMATION OF CLOSELY SPACED FREQUENCIES
BURIED IN NOISE USING LINEAR PROGRAMMING

2.0 Introduction

In signal estimation one <finds that there exists a
time-frequency duality in that the signal may be estimated
either in the time or frequency domain. If a portion of
the signal 1is known for a specific 1length of time, the
method where the signal is estimated outside the time inter-
val 1is refered to as signal extrapolation. If on the other
hand the signal is obéerved over the same length of time
and from these observations the power spectral density of
the signal or simply the spectruﬁ is to be determined, the
process is called spectral estimation. If the signal is
known over an infinite interval, the Fourier transform of
its autocorrelation yields the power speciral density. In
either case, if the signal is estimated in one domain the
estimate of the signal in the other domain can be obtained

G
by using the Fourier or Z transforms.

There are numerous methods that have been developed for

signal extrapolation and spectral estimation. In extra-

6
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3N polating a signal outside its observation interval, it is a

i well known fact that if the signal 1is continuous, de-

Eﬁ , terministic and bandlimited it is possible *» perform the

»;; :'.; extrapolation without error. This is beca:.. such a signal

N is analytic and the Taylor series expansion can be used
E’ since in priciple, all the derivatives within the observed
o interval of the signal can be evaluated. This is called
‘Q: analytic continuation. However, in practice the above
fx procedure 1is not feasible because if the observed data
e contains noise, the evaluation of the derivatives would be
rﬁ. inaccurate since the derivative is a noise-sensitive proc-
) ess. Slepian et al. [1] proposed an algorithm based on a
g series expansion in terms of basis functions called
R prolate spheroidal wave functions. These functions are
a orthogonal over the observation interval as well as over
f“'{' the infinite interval. The series coefficients can be
N evaluated from the observations given but the series is
E valid for all time. This method is limited by noise and
e truncation errors. In general the numerical generation of
::: these functions 1is very difficult. A method proposed by
E: Papoulis [2] reduces the mean-square error between the
estimate and the original (time-unlimited) signal at suc-
g cessive iterations. Using this error energy reduction
. procedure and the properties of the prolate spheroidal wave
:::f functions, Papoulis has shown that this algorithm converges
- to the original time unlimited signal. The error energy
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reduction procedure which Papoulis wuses was first used by
Gerchberg [3] in order to extend a known segment of an
analytic spectrum.. Gerchberg viewed the limited spectrun
as the sum of the true spectrum and an error spectrum. 1In
the algorithm proposed it was not the idea to construct the
spectrum perfectly out to some new 1limit but to reduce the
energy (squared function integrated) of the error spec-
trum. The error spectrum is equal to and opposite to the
true spectrum in the area outside where the true spectrum
is known. The procedure was shown to be very effective

against noisy data.

For discrete-time signals, the analycity property vanishes
due to sampling. Therefore, the extrapolated estimate need
not coincide with the original signal. Other constraints
besides the band-limited assumption must be imposed on the
estimate to achieve a unique solution. Much of the work on
extrapolation of discrete-time signals is recent. Sabri
and Steenaart Dﬂ suggested a discrete version of the
iterative algorithm proposed by Papoulis [2]. The al-
gorithm derived a solution by finding an extrapolatibn
matrix. Cadzow [5] has proposed a different extrapolation
matrix which does not have the existance problems of the

extrapolation matrix suggested in [4] and has some dimen-

sionality advantages. Much of the theory of extrapolation

has been developed for continuous-time signals, and a solu-

» .=y 1
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tion for the discrete case has been obtained by sampling

’! the continuous-time solution.

Eﬁ Estimation of the spectrum of discretely sampled deter-

ministic signals has usually been based on procedures using
te. the fast Fourier transform. These methods are compu-
- tationally efficient and produce reasonable results for a
large class of applications. Even with these advantages
the fast Fourier transform approach has two limitations.
The first and mest prominant limitation is the frequency
resolution, i.e., the ability to distinguish the spectral
.- responses of two or more signals. The frequency resolution
is approximately given by the reciprocal of the time inter-
ii val over which the sampled data is available. The second

limitation 1is the windowing of the data when processing
fﬁ with the fast Fourier transform. This windowing occurs
because in order to use the fast Fourier transform the
S signal is truncated at some:» time and assumed to b; periodic
< beyond this point [6]. If the window used is a constant

amplitude window, then 1its Fourier transform is the sam-

_5': pling function. When in the spectrum there is an impulse,
the convolution of this impulse with the sampling function

ALY

3; produces a spectrum where the energy of the impulse 1is no

longer localized at one frequency bdbut leaks into the side-

s

* lobes of the sampling function. This leakage can have an
E effect on other spectral responses that are present. These
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effects can cause weak signal responses to be masked by
higher sidelobes from the stronger spectral responses. By
selecting tapered data windows such as Hanning, Hamming or
Bartlet windcows [7] , the sidelobe leakage can be reduced

but at the expense of reduced resolution.

These two limitation of the fast Fourier transform are
troublesome when short datz records are analyzed. Short
data records are a common occurance because many measured
processes are brief in duration. Some applications where
short data records are encountered are neurophysics [8,9],
geophysics [10], speech communication [11.12], radar [13].
sonar [1k], and direction finding [15]. Due to the inher-
ent limitations of the fast Fourier transform, many alterna-

tive spectral estimation procedures have been proposed.

In a classical paper by Blackman and Tukey [16], a prac-
tical implementation of Wiener's [17] autocorrelation
approach to power spectrum estimation when using sampled
data sequences was used. The method first estimates the
autocorrelation lags from the measured data, windows the
autocorrelation estimates in an appropriate manner, and
then Fourier transforms the windowed lag estimates to ob-
tain the power spectral estimate. This method was very
popular until the introduction of the fast Fourier trans-

form algorithm by Cooley and Tuckey [18]. This renewed
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interest in the periodogram which 1is obtained as the

squared magnitude of the output values from a fast Fourier
transform performed directly on the data set. The maximum
entropy spectral estimation method proposed by Burg [19] is
based upon an extrapolation of a segment of a known
autocorrelation function for lags which are not known. In
this way the characteristic smearing of the estimated spec-
trum due to the +truncation of the autocorrelation function
can be removed. Burg argued that the extrapolation should
be made so that the time series characterized by the extra-
polated autocorrelation function has maximum entropy. In
linear prediction [20], the eignal is modeled as a linear
combination of past outputs and inputs. When only the
present input is used, the coefficients of the model are
solved for by minimizing the totazl squared error with re-
spect to each of the coefficients. A very efficient al-
gorihtm has been developed by Levinson [21] and Durbin [22]
for solvihg the equation for the coefficients. A more
extensive overview 1is given in papers by Jain et al. [23]
on extrapolation algorithms for discrete signals and Kay

et al. [24] on spectrum estimation.

A major concern of spectral and time series estimation is

that of system modeling. Often if there is more knowledge

about the process from which the data is taken, one is

able to make a more reasonable assumption other than the

.................................
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assumption that the data is zero outside the observed inter-
val. A priori information or assumptions may permit selec-

tion of an exact model for the process, or at least a model

that is a good approximation to the actual process. It is

usually possible to obtain a better spectral estimate

".;Z.: F-. based on the model by determining the parameters of the
%2 " model from the obsevations. By wusing modeling, spectral
R estimation becomes a three step process. The first step is
EE EE to select a time series model. The second step is to
.53 - estimate the parameters of the assumed model using the data
«“ R samples or auto correlation lags. The third step is to use
:i .. the estimated parameters and substitute them into the
E% “ theoretical spectrum implied by the model. The motivation
= i for the modeling approach to spectral estimation is the
E} higher frequency resolution achieved over the traditional
ﬂa fi techniques such as the periodogram [2&]. It 1is easy to see
o B that if one is successful in developing a parametric model
:. &3 for the behavior of some signal, then the model can be used
?; Sj for different applications.

N

- éi In time series analysis, the continuous-time signal s(t)
:i ; is sampled to obtain a discrete-time signal s(nT), also
f; E: termed a time series, where n is an integer variable and T
Fos is the sampling interval. The sampling frequency is given
‘?? v as £=1/T. The expression s(nT) can be abbreviated as s(n)
3 i; by normalizing the discrete time scale by T.
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The most powerful model 1in wuse today is the ARMA model
where a signal s(n) is considered to be the output of some
system with an unknown input wu(n) such that ti.. follgcwing

relationship holds
s(n)=-‘ia(i)s(n—i)+G f;g)(l)u(n_l) ,5(0)=1 (2.0-1)

where af(i),1<k=p,b(l), 1%1=q, and the gain G are the param-
eters of the hypothesized system. In equation (2.0-1) the
output s{(n) is a linear function of past outputs and pre-
sent and past inputs. The signal is predictable from line~
ar combinations of past outputs and inputs, and therefore

it has been termed 1linear prediction.

Equation (2.0-1) can also be expressed in the frequency
domain by taking the Z transform of both sides of the equa-
tion. If H(z) is +the transfer <function of the system,

then we have that

H(z) = S(z)/U(z)

- ]
6 1+Zb(1) 2" (2.0-2)

1+§a(i)z-'

where
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S(z) = 2 s(n)z™ (2.0-3)

anO

is the Z transform of s(n), and U{(z) is the Z transform of
u(n). H(z) in (2.0-2) is the general pole-zero model. The
roots of the numerator are the zeros and the roots of the

denominator are the poles of the model.

There are two special cases of the model which are also of
interest:

1) all-zero model: a(i)=0, 1€i<p

2) all-pole model: b(l)=0, 1<1=q.
In statistical 1literature the all-zero model is known as
the moving average (MA) model, and the all-pole model is
known as the autoregressive (AR) model. The pole-zero
medel 1is then known as the autoregressive moving average
(ARMA) model. 1In this chapter only the pole-zero model and

the all-pole model wili be considered.

In many applications one finds that the spectrum of the
signal is composed of two closely spaced impulses. This
situation can appear in radar where one of the impulses is
due to a jamming signal and the other 1is produced by a
desired signal. If the energy of the desired signal is
small compared to the energy of the jamming signal, when
the time over which the total signal is observed is small

the resultant spectrum has the two impulses smeared togeth-
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er. From this smeared spectrum it 1is desirable to locate
the signal with the smaller energy. Kaveh [25] and Cadzow
[26] have propcsed methods for estimating the parameters of
an ARMA model from the observed datz samples. In Goth
methods it is found that the order of the ARMA models has
to be higher than for the theoretical case when high resolu-
tion of noisy signals is desired. The phenomenon of the
smearing of the pulses into one broader pulse is due to
the multipiication of the actual time signzl with a rectan-
gular window to produce the short time observations. In
the frequency domain the transform of the short time signal
is a convolution of the desired transform with the trans-
form of the rsctangular window. If the signal is concen-
trated in 2 narrow bandwidth, this convolution operation
will spread the energy of the process into adjacent fre-

quericy regions. The convolution of the window transform

with that of the actual signal transform means that the
most narrow spectral response of the resultant transform
is 1limited to that of the main-lobe width of the window
transform, independent of +the data. For the rectangular
window, the main-lobe width is approximately the inverse of
the observation tinme. When additive noise 1is also pre-
sent, the spectral response whose energy level is smaller

than the noise energy 1level can be hidden by the noise

making it difficult to determine that particular spectrzal i

response. Gerchberg [3], and Mammone and Eichmann [27,28] e
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have devised methods for estimating the spectrum when there

is a lack of spectral resolution due to windowing.

In this chapter a new method for estimating the coef-
ficients of an ARMA process is introduced. The ARMA proc-
ess considered 1is one whose spectrum contains two impulses
closely spaced together in frequency and the power of one
impulse is larger than the other impulse. This is the case
that would be found in radar. The data is observed for a
very short time, whiczh along with additive noise makes it
difficult to distinguish the two impulses from one another.
The method of solution assumas two things. First, it is
assumed that the approximate region in the freguency do-
main where the two impulses occur is known. The second
assumption is that the signal is known to be the sum of two
sinusoids whose spectrum is given by two impulses. This
assumption can be made by looking at the resultant spectrum
of the time windowed signal. From the first assumption it
is known where approximately the pulses are to be. In that
region the spectrum is very broad which could bYe only
possible if the sampling function is convolved with two
impulses and not with one impulse. The method of solution
uses linear programming to solve for the coefficients of

the ARMA model. Linear programming has been used for spec-

trum estimation by Mammone and Eichmann [27,28] as well as

Levy et al. [29]. In this method , 1linear programming is
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w
B used to minimize the 1, norm of the absolute values of the
. error. The error is the difference between the actual
- spectrum and the one obtained from the ARMA model wused in
EQ the region where the response is known to be. This errecr
| is sometimes termed the residual error. The new method
g? which estimates the spectrum and from which the time signal
GE estimate can be obtained is demonstrated by computer simu-
e lations.
&

2.1 Parameter Estimation

The method by which the parameters of the pole-zero model

- will be estimated is a two step process, first, to estimate

ii the denominator coefficients and second, to estimate the
coefficients of the numeratcr independently. What this

ﬁs method is doing 1is to estimate the coefficients of the
transfer function H(z). The Z transform of the signal S(z)

!! can be thought of as the output of the filter H{z), with

e an input function U(z). If the input u(n) 1is taken as a

- unit impulse, then one has that the transfer function H(z),

E? and the signal S(z) are identical, or

N

o H(z)=S(z). ©(2.1-1)

5

" Therefore, by estimating the parameters of H(z) one 1is also

fg estimating the parameters of S(z).
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The first step in the estimation of the parameters will be

to estimate the coefficients of the denominator, a(i).

Equation (2.0-1) can be rewritten in the form
p ] .
s(n)=- Zi a(i)s(n-i)+B(n) (2.1-2)
=) .
where
qQ
B(n)=G |2_:013(1)u(n-1), b(0)=1,
If in (2.1-2) one takes the summation to be an apprcxima-
tion of the signal s(n), one has that the approximation
s'(n) is

s'(n)=- ,2, a(i)s(n-i). (2.1-3)

Then the error between the actual value s(n) and the esti-

mated value s'(n) is given by

B(n)=s(n)-s'(n)=s(n)+ é a(i)s(n-1). (2.1-4)

The value B(n) is then taken to be a form of the residual.
This method estimates the parameters from data in the fre-

quency domzin, so that (2.1-2) is converted into the fre-

quency domain by taking ¢the discrete Fourier transform
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BEENG (DFT) of both sides of the eguation. Since the fast
!‘ Fourier transform (FFT) will be used in all the simula-~
N tions, the DFT is used instead of thr 7 transfor- Mnia
5 i is possible because a periodic seguence ..as a DFT which can
e &S
N

be interpreted as samples on the unit circle, equally
spaced in angle, of the Z transform ¢f one period. If a
signal is periodic with period N, it is possible to repre-
sent this signal in terms of a Fourier series consisting of
a sum of sines and cosines or equivalentiy complex expo-
nential sequences with frequencies that are integer multi-
rles of the fundamental fregquency 2w/N associated with the
periodic sequence [6]. The DFT analysis and synthesis pair

are expressed as
Nt .
X(k)= Zox(n)exp(-JZWkn/N)
n=

x(n)=1 :Eo X (k)exp( j2mkn/N)

N

[ IV

where both x(n) and X(k) are periodic. This gives us

fls(n)exp(-j2mk/N)=

[ X~

- f’, exp(-j2mrik/N)a(i) ié(n)exp(-j%k/ﬁ)

+B(exp(j2mk/N) (2.1-5)

Equation (2.1-5) represents the relationship between the

Lttt AN A 2 AP P S AYEN ANl RN

- aEEme & s s~

e e e N e e T e T e At e e Tl PO o SR PRI WL AR TS AR v
i I N AT "‘; '».:'.:'.:";1-3:'.- ta '.L\'l_fl.‘:kf":’.l:‘ 1;&’;‘ RV P AT Qi R Py g"Ll-lA.*;h ta" L




.
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WA DFT of the sigral s(n), the DFT of the convolution sum

(where p<N, so that the rest of the a{i)'s are set to
zero), and the DFT of the residual. ' This equation can be
written in a simpler form zs

P

S(k)=- [ §ja(i)exp(-jzwik/N)] S(k)+B(k) (2.1-6)

where k ranges between the values of O and N-1. The var-
iables S(kx) and B(k) are complex numbers so that they may

be written in the forn

S(k)=s'(k)+js" " (k)

B(k)=B'(k)+jB''(k). (2.1-7)
By making use of Euler's formula for the exponent, (2.1-6)
Tﬁ is written as
F S*(K)+38" " (k)= |
g - 3 a(i)(cos(2mik/N)- jsin(2mik/N)) (S* (K)+3S'* (k)
: +(B* (k)+§B" * (k)

= i;a(i)(S'(k)cos(Zﬂik/N)+S"(k)sin(2#ik/N))+B'(k)
-3( £, a(1)(5** (k) cos(2mik/N)-S* (K)sin(2mik/N))-B"* (k)))
(2.1-8)

From (2.1-8) there are two sets of equations, one for the

real part and the other for the imaginary part given vy
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S*(k)=- ia(i)(s'(k)cos(zvrik/N)+s"(k)sin(zrrik/r«))+3'(k)
(2.1-9)
S*'(x)=- i a(i)(s'*(k)cos(2mik/N)-S"'(k)sin(2mwik/N))+B"' "' (k)

(2.1-10)

Because linear programming will be used to solve for the
coefficients a{(i), we can also specify the range of the
a{i)'s to help in the solution. The range of the coef-
ficients a(i) can be specified tecause it is known that
the signal s(n) is made up of the sum of two cosines of
different ©Dut closely spaced freguencies. The denominator
of the Z transform of a cosine wave can be derived as fol-
lows. Frem the definition of the Z transform and the ex-

ponential representation of the cosine one has
(o] _ [ o] . —x

cos{wkT) o 23.5exp(jwkT)z *+ 2 0.5exp(jwkT)z™ (2.1-11)
k= K=2O

In each of the summations the exponential can be nmulti-

plied by z and can be written as

exp(jwkT)z™ = (2" exp(jwkT))"
exp(-jwkT)z™ = (2" exp(-jwkT))* (2.1.12)

By substituting each term into the appropriate summation

and using the infinite summation identity that
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Equation (2.1-11) is written as

cos(wkT)“O.5[ 1 + 1 ]

1-27' exp(jwT) 1-27! exp(-jwT)

-

=0.5 1-z27' exp(-jwT)+1-2-' exp(jwt) N(z) (2.1-14)

(1-27" exp(jwT)) (1-2"" exp(-5wT)}) D(z)

By multiplying the denominatcr one obtains

D(z)= 1-(exp(jwT)+exp(-jwT))z"" +z-% (2.1-153)

Equation (2.1-15) can also te reduced to the form

D(z)=1-2coswTz '+z-2 (2.1-11)

where wT is the normalized radian freguency of the cosine

¢t
UPA - y

wave, and T is the sampling interval. Knowing that s(n) :;:
s
has two cosine waves, the Z transform S{z) has to have the Eﬁ.
:\:{-:

product of the denominator of each of the cosine waves to

v 44 r

give

D'(z)=1-2(cosw, T+coswaT)+2(1+2cosw, Tcoswy T)z-2
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-2(cosw, T+cosw,T) 2 %2™* (2.1-17)

where w and w are the two radian frequencies of the co-

sines. Eqguaticn (2.:i-17) can be written as

D'(z)=1+a(1)z ' +a(2)z%a(3) = +a (k)5 (2.1-18)

where a(i)=-2(cosw, T+coswaT)

a(2)=2(1+2cosw; TcoswaT)

a(3)=-2(ccsw, T+cosw,T)

a{li)=1.
Each of the coefficients in (2.1-18) contains cosines. The
limit of a cosine is -1 and +1. These upper and lower
limits of the cosine can be used in the expressions for the
coefficients to give the 1limits on these coefficients.

Tris gives the limits as

-b=a(1)=4
-2=a(z)=6
a(3)=a(l)
a(l)=1. (2.1-19)

A systen is said to be stable if all the poles of its trans-
fer function are contained inside the wunit circle of the
z-plane. In the special case of sinusoids one finds the

poles to be located on the unit circle so that the system
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can be termed marginally stable. By marginally stable it

is meant that the response is oscillating but the poles are

e

not outside the unit circle. Since the sinusoid is an

>,
o,

oscillating function, 3iIts poles have tc be lcoccated on the

s
-,

unit circle. Therefore, if a sinusoidal response is termed

A

.l
.

. stable, it is only because it has no poles that are lo-

¢ cated outside the unit circie. If the soluticn gives values

.

™
4

according to (2.1-19) then one is assured a stable Tilter

because one obtains these limits through the Z transform

. i

of the cosine wave which can be called a stable function.

.- Equztion (2.1-6) can be written as

o P . s ,

e (1+ X a(i)exp(-j2mrik/H))s(k)=B(k) (2.1-20)
E: By evaluating the z in (2.1-1€) on the unit circle one has

& D' (exp(j2mik/1i))=1+ iZ:a(i)exp(-J'?-Wik/N) (2.1-21)
e

= which is seen to be identical to the term in the brackets
E? of (2.1-20) with p=4, Therefore, we know that there are
;' only four unknown coefficients in the denoninatcr of the
Ei filter H(z). Based on the assumption that the signal con-
o tains two sinusoids, it is possible to determine the exact
- number of coefficients for the denominator of the filiter
s H(z)., This 1is ©possible because the method of solution

¥ su it 4
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will ©be able to give results which are close to the actual
values even when noise ic added. In methods where noise
plays a large role in the estimation of coefficients, the
order of the mecdels which determine the number of coef-
ficients used has to be larger than the theoretical numnter.
In many such cases the choice of the model order is ‘tased
on trying different orders until +the Ybest results are

obtained [27].

If cre wes only interested in obtaining the frequencies of
the signal, by factoring the dencminator polynomial one
could obtain the radian freguencies of the signal from the
argument of the comnplex roots. Since it is also of
interest to obtain the time signal, it becomes necessary
to go on to the second step of the estimation process where
one has to first do some rearranging of (2.0-2) in order to
estimate the coefficients of the numerator in a manner
similar to the one just described. It is not possible to
use B(k) that comes from the solution of the first part for
the coefficients of the denominator, because if the signal
has noise added onto it, by minimizing this residual, the
noise %becomes part of this residual term. Therefore, the
first thing one has to do, is to take (2.0-2) anc invert

it, to give
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< G = 1+Z a(i)z” (2.1-22)
i H(z) 1+ 1)z
y =i
| ;ﬁ where for simplicity we will replace the H(z) term by S(z)
i and the quotion G/S(z) by S*(z). This is done because the
| g! same method is wused to estimete the coefficients b(l).
@: The gain G cannot be fcund using this method so that the
b signal estimate will always be normalized to one. rronm
EE (2.1-22) we obtain an exprescsion similar to (2.1-2) with a f}

residual A(n) given bty

q
- s*(n)=- 3 b(1)s*(n-1)+A(n) (2.1-273)
:
ii where s*{n) is the inverse 2 transform of S*(z). Going
through the same analysis as before we obtain the fol-
ﬁz lowing two equations similar to (2.1-¢) and (2.1-10),
q
” S**'(k)=- .Z. b(1)(S**' (k)cos(2wik/H)+S*' ' (k)sin(2mlk/N) )+A" (k)
£ (2.1-24%)
g.: r *
S*'* (k)=- 3 b(1)(S*' ' (k)cos(2mik/N)
‘=i
. +S* ' (k)sin(2 7 1k/N))+A" " (k)
-~
(2.1-25)
b
pN

. where S*'(k),A'(k) are the real parts and S*''(k),A''(k)

are the imaginary parts of S*(k) and A(k).
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In order to obtain the range of valiues of the b(l)'s, the
rumerator N(z) of the Z transform of the sum of two cosines

is given by

N(z)=(A,+A;)-(A, (cosv, T+2cosw, T}+4,(cosw, T+2cosw, T) )z
+(A,+Az) (1+2cosw, Tcoswp T)z"2

-(A,cosw, T+AgcoswpT,;z™> (2.1-26)

where A, and A, are the amplitudes of the ccosines and w, T
and wT are as bvefore. Lgain we have that the values of
the cosines in (2.1-26) are between ~1 and 1 =0 that we can
ottain the range cf the b(l)'s. Uhen substituting in the
limiting values c¢f thz cosines into {(2.1-26) i% is noticed
tha% each coefficient has the sum of (A;+42). This sum is
the gain factor G which cannot be found wusing this method
so that it 1is factored cut of the numerator. Eauation

(2.1-2€) can then be revresented zs

N'(z)=1+b (1) +p  (2) B (3) 22 {(2.1-27)
where

N'(2)=N(z)/(L, +ip).

The modified coefficients of the numerator v'(l) have the

following ranges
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' ' -3%r'(1)=3
T -3=v'(2)=3
L _1¥p (3) =1 (2.1-28)
] L\‘
be Again we are assured & stzble filter 1f the coefficients
& are within these ranges. It can be cshown as before that
N
\» {(2.1-2L) and (2.1-25) can be used to find +the numerator
& o2 > —~ 4 3 .2 -
L ccefficients of H(z) with q=3.
v
Eb Once the coefficients of both the nunerator ani de-

nominator have been calculated, one can obtain the spectrun
from H(z) or the normzlized estimate of the time series by
ii taking the inverse = transform of H(z). The inverse 7Z

transform 1is chosen for determining the estimated ime
o signal because it is possitle to obtzin a closed Form solu-

tion of the estimate. From this closed forr the rztio of

g! the amplitudes and the phases can be obtained to compare
%S with the exact sclution. So far there has been no mention

of exactly how the coefficients are to be solved for. In
- the next section a discussion of how the protlem is formu-

lated to lirear programming which is the method of solution

-
0

g used to obtzain the unknown values of the coefficients is

discussed,
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2.2 1, Norm Formulation and Linear Programming

K !

A

‘

A linear optimizaticn rroblem can be stated in the form

,‘.
[
.
»

S ed
N minimize 2 (c(i)-Dx)
v o subject to Px=q
v Gx=h (2.2-1)
%
ST
where the term in the summation is called the objective,
&; and the two sets of linear equaticns are the conditions of
- the problem. An optimum solutiorn is obtaired when the

conditions of the problem and the given objective are

satisfied simultaneously. A minimum feasible solution

[~ 3

E satisfies (2.2-1) and the condition that all the x's of the

solution are ncnnegative. The minimum feasible solution is

4 v s

v

g o
=

obtained using 1linear programning methods which were first

introduced by Dantzig [30].

M
Y8 Y

In many applications of the linear optimization problem,

-

N ff the solution vector must have both positive and negative
5 l‘ values, To overcome this problem the solution vector is
- %Z replaced by the difference of two positive valued vectors
. given by x-y. Looking at (2.2-1) a special form of the
o optimization is cbtainred if the variables c¢(i) and D of the
;E objective are replaced by the variabtles h and G re-

spectively. It is seen that by doing this substitution

vy
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~
". . I3 -
i the objective 1is the summation of the difference between a
ll value obtainred by multiplying the solution vector x with

the matrix G, and the known guantity h. This summaticn
" which can be termed the residuzl 1is zerc only when the
- conditions are satisfied exactly. In the cases where they
v are not, the residual will bte a positive or negative
A numnber. Therefore, one can write the objective as
()
F- mininize ¥ (h-Gx+Gy) (2.2-2)
For-
tg or
A
N
8 minimize ¥ (u-v) (2.2-3)
&

where u a2and v are positive valued vectors tc be consistent
be with the linear programming formulation. From (2.2-2)
" and (2.2-3) one has
fa Gx-Gy+u-v=h (2.2-4)
oy
CE where x=0
X o
7
- -
& u=0
. -
o v=0.
o Using (2.2-3) and (2.2-4), equation (2.2-1) is rewritten as
Ty
{4
Q:::_'
1
&
W
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ninimice 3 u-v
sublect tc Px-~-Fy g
GX-CGy+u-v=h (2.2-5)

In this form the linear ortimization probl~ is minimizing

the 1, norm of the residual (u-+.

The variablies X,V. «ww VvV of the lirear optinizaticn vrob-
lem can be solved for using the simplex method [31]. In
the sinplex methoé once a feasible solution has been deter-
mined, a minimun feasible solution is obtained in a finite

number of steps. These steps, consist of finding a new

t
feasivle solution whose corresponding value of the objec-
tive function is less than the value of the objective fun-
ction in the preceding case. This process continues until
a minimum solution has been reached. One is never guaran-
teed that 2 sclution exists., If no solution exists it is
either becazuse no solution exists in terms of nonnegative

values of the variables can be found or a nonnegative solu-

tion yields an infinite value to the objective function.

It is found that for <the problem of section 2.1, it is
possible to obtain a minimum feasible solution in deter-
mining the coefficients of the ARMA model. The next step

is to show how one goes about relating the problem of

section 2,1 to the linear optimization problem.
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'_,\
" In (2.2-5) it is seen that the variable ¢ is part of thre
) inequality condition. hen the equaticn fer the deter-
ﬁ: rmination ¢f the denorinator ccefficients was being de-

into the 1inequzlity condition of (2.2-5%).

the inequality

and cosines. By making these subs%itutions

koot e it

rived, it was seen from (2.1-9) that the coe

£

Tfficients have

limiting values. Two of there <conditions can Ye placed

As an example

-4 < a(l) =4 (2.2-6)
can bpe written as
a(l) £ 4
-a(1) € 4 (2.2-7)
G
e
-
The first ineguality ¢f (2.2-7) represents the upper 1limit
- and the second inequality represents the lower 1limit of
I (2.2-6)., The last two conditions of (2.1-19) can be placed
b into the equality condition c¢f (2.2-5). Eguations (2.1-9)
T and (2.,1-10) can also be placed intc the equality condi-

tions of (2.2-5). The a(i)'s of the equations are the
< unknewns being solved for, the S'(k) and S°''(k) on the left

- side of the equals sign make up the vector h, the B'(k)
{

and B''(k) are the residuals which are to be minimized, and
H‘- the matrix G is made up of the terms involving the sines

into the 1lin-
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'."l":,‘

ear programming fcrmat, one 1is able to solve for the un-

S e

known coefficients. An Identical analysis can be made for

-
8-

determining the coefficients of the numerator from (2,1-24),

>
s
o

(2.1-25) and (2.1-28).

L
iy ]

A 2.3 Computer Simulation and Results

The method of sclution was imulated wusing the Simplex
O Linear Progranming subroutines contained in the Inter-

national lathematical and Statistical Library (ImsL)

. (g . . '

4 & Fortran callatle subroutine package. CUNY's. IBil computer

., system was used. Tc¢ chow how effective this new method 1is,
b

» '-l

we chose a signal whose FT contains two freguency pulses in

a the Irequericy cemain which could be placed closely to-
gether., To satisfy this condition we chose

1.’

~

erh pA 5% 4r -3
%%

s(n)= +2 cos(2m (110)n/1)+ /20 cos(2w (114)n/N) + w(n)

‘ } (2'3-1)
v

AAARIERS

vhere C£n<€511, N=£12 and w(n) is Gaussian ncise with var-

: f__: jance o2, The signai-to-noise ratio (SNR) of the first
S

| cosine is given by 10log(1/c?) andi of the second
" L;' 101og(10/a'2). The bandwidth Is given by

.

Y
...l . ~.
v

AD=(114-110)/K=0.0078125
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which will be used in the determinaticn of the

time-bandwidth product.

Fig. 2.3.1 shows the signal s(n) when there is no noise and
all 512 points are used. We can see that s(n) contzins an
envelope of a sinusoid with six periods in tre 5!2 points
shown. Fig. 2.3.2 shows the 1log of the magnitude of the
Fourier transform of s(n), where ve see two pulsses lccated
at the frequencies of the signal. The rest of the mag-
nitvdes are so close to zero that their logs are very
negative anrd cannot be shown in the figure. In rig. 2.3.3
we have added noise with a variance ¢2=1.0 and we see that
it 1is impossiblie to distinguish how many rperiods the en-
velope c¢f the eignal contains. The spectrum of this noisy
signal is shown in Fig. 2.3.L where one of the things that
one notices right away is that the spectrum is now centered
about the 0.C db 1level. lThis corresponds tc the spectrunm
of the noise being added to the spectrum of the signal.
The reason why the noise did not affect the pulses is te-
cause the noise 1s not large enough to bury any of the
puises when all of the points are used in determining the
spectrum. Noise plays a large role in the determination of

the loacation of these pulses when not all the points are

used and the two pulses tegin to smear together.

In orcder to be abie to compare the location of the poles

-
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and zeros of s(n), Fig. 2.3.5 shows the first quadrant of
the z-plane. Ve chose to show only the first quadrant
because 2ll the poles and zercs of our s(n) can be shown
here with the understanding that for complex poles and
zeros, there are mirror images of thesce poles and zeros in
the fourth gquadrant. Fig. 2.3.5 shows two poles located on
the wunit circle which reprzserit the 1locations of the two
pulses in the srectrum. The zero in between the pcles on
the unit circle is the dip that occurs between the two
pulses 1in the spectrum of Fig. 2.3.2. The zeros on the

real axis along with the compley poles and zeros re used

1§

to calculate the amplitudes and phases of the signzl s(n).

In order to have & uniform method of measure when truncat-
ing the signal s(n), we define the time tandwidth product
(TBW) as the number of samples used multiplied by the nor-
malized bandwidth of the signal which was defined earlier
for our case. This definition can be explained by loocking
at the spectrum of a DFT having length N. The DFT is a
two-sided transform so that the spectrum has both positive
and negative fraquencies. The maximum frequency of the
spectrum is N/2 which in terms of a normalized frequency

can be divided by N to give 1/2.

+3

his frequency 1is known
2s the Nyquist frequency because it gives the separation
between time samples as 1/N. The Nyquist frequency is also

the bandwidth of the signal since it 1is assumed that the
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o spectrum has a periodic extension beyond this frequency.

, Therefore, 1if all N time sanples are used, the
time-bandwidth product is given by

% TBW= N-(1/N).(N/2) = N/2

from which the normalized TEW is given by 1/2. For the

E DFT,

o the bandwidth of the signal is taken to be less than K/2,

the separation of time samples is given by 1/N. If

- it is seen that the normalized bandwidth will ©be less even
- when all of the N samples are used. A normalized TBW of

less than 0.5 corresponds to choosing the separation be-
- tween time samples too far apart so that the signal 1is

undersampled. It can be seen that a TBW=0.5 is the limiting

RN

value for spectral resolution. If TBW becomes smaller, then

any two peaks spaced closely together will become un-

~

distinguishzble because they smear into one broader peak.

%& Even when TBW 1is greater than 0.5, there may be difficulty
in distinguishing the twc peaks if the noise power is high

!! enough to hide the weaker pulse.

ta

IR

For the first case to test our method, we chose to use only

\;:
RN, | TNy-

5 92 out of the 512 samples. This gives a TBW of 0.719. In

3

Fig. 2.3.6 we show the truncated time signzl s(n) with noise

. .
)

[ ANR

variance ¢2=1.0. The spectrum obtained wusing the FT of

LPCLY L ) SR

- this signal 1is shown in Fig. 2.3.7. In the spectrum of

et
¥

L

Fig. 2.3.7 we see that the two pulses are smearing into one

.

=3
]

with a very shallow dip between the two peaks very close
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in height to the weaker pulse. This shallow dip is due to
both the TBW and the noise. The combination of the two
makes for the difficulty in judging that there should tGte
two peaks. After using our method, 1in calculating the
coefficients of the numerator and denominator of the para-
metric model, we found the pulses of the spectrum to be at
normalized frequencies'§ =0.,2148 and f;=0.2285 as compared
to the actual values f, =0.2149 and f,=0.2227 which shows
that we are very close to the original values with our
estimates. The pulses at these frequencies are shown in
Fig. 2.3.8 where the dip that is located between the two
pulses is at f=0.2231 as compared to where it should be at
£=0.2167. The location of the dip represents the complex

zero located on the unit circle of the z-plane.

We observe that the first pulse in Fig. 2.3.8 is 1larger
than the second one, and if we look at Fig. 2.3.2 we see
the opposite. If we take a look at the location of the
poles and zeros from the coefficients calculated we see

that they are located as follows

poles: 0.219+j0.975 zeros: 0.166+j0.977
0.134+30,991 0.203
0.0

which are plotted in the z-plane in Fig. 2.3.9. The actual
locations are shown in Fig. 2.3.5 and are given by

poles: 0.219+30,975 zeros: 0.207+j0.978
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0.170+j0.985 0.183
0.0
By comparing the 1location of the poles and zeros we see
that there is an error in the location of the estimated
ones. These errors are not that great but they have caused
the first peak to be higher than the second peak. By tak-
ing the inverse 72 transform of the parametric model using
the coefficients calculated, we obtained the normalized

signal estimate s(n) given by

s(n)=0.612cos(1.349n+0.1479)+0.402cos(1.435n-0.1741)

(2.3-2)

which if we compare to (2.3-1) we see that the first
cosine has a larger amplitude and both cosines have a phase
which is not in (2.3-1). The estimated signal is shown in
Fig. 2.3.10 where the envelope of the signal is a sinusoid
having seven periods in the 512 samples compared to six for
the original signal. Again this 1is a consequence of the

error of the location of poles and zeros.

For +the next case investigated we chose the same TBW prod-
uct as before but increased the noise power to¢72=5.0. The
individual SNR'S are given by -7 db for the smaller
amplitude cosine and 3 db for the larger amplitude cosine.

Fig., 2.3.11 shows the time truncated version of the signal
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%t EN which when compared to Fig. 2.3.6 shows how much higher the
'.!
b !' - amplitudes are and it is impossible to see that the signal

is periodic. The FT of the signal 1is shown in Fig. 2.3.12
where it 1s noticed that the spectrum is higher above the

zero db line than in the previous case because the noise

gg power is large. Ve see that the two peaks are separated by
. a very shallow dip and that there 1is a peak on the right

side so that it looks 1like there are three peaks in the

Ea range of fregquencies the signal 1is known to te in. The
“ soluticn to our methcd gave coefficients from which the
Eg spectrum of Fig. 2.3.13 is obtained. The normalized fre-
- quencies of the peaks are 1I;=0.2148 and f2=0.2304. Co-
E: mparing these values with the actual ones we see that the

first peak occurs at the exact frequency and the second
peak is only slightly in error. This error is due to the
TBW and noise. We see that by increasing the nolise five

fold we are able to get as good results as when the noise

oe was smaller. The poles and zeros from the coefficients are
3 poles: 0.219+j0.973 zeros: 0.177+j0.982

. 0.128+30.994 0.213

~ 0.0

which when compared to Fig. 2.3.5 are slightly off. From
E_\' the location of the poles and zeros we take the inverse 2 |

transform of the parametric model to obtain the eguation of

the normalized signal s(n) |
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E:' s(n)=0.435c0s(1.349n+0.0609)+0.570cos(1.4478n+0.0961)
. (2.3-3)
e which when compared to (2.3-1) shows that the ratio of the
i amplitudes 1is incorrect and that the solution introduces
: phases which were not there originally. This signal s(n)
is sho‘wn in Fig. 2.3.15 where the number of periods of the
‘ envelope of the =signal 1is eight compared to the actual
o number of six.
| '
L; In the next case, Fig. 2.3.16 shows the time &truncated
; version of the signal for a TBW=0.5 and noise with var-
:\ iance o?=1.0. The spectrum in Fig. 2.3.17 shows that the
- first peak is not distinguishable ©because the dip between
i the two peaks is at the same 1level as the first peak.
tl With our method, the spectrum obtained is shown in Fig.
2.3.18. It shows two peaks located at T,=0.2148 and
P f2=0.2285 which are at the same locations as in the first
. case. By decreasing TBW our method of solution was able to
| get as good results as when the TBW was larger and the two
"_'_‘ peaks were more clearly defined. Again we notice that the -
= first peak is 1larger which is incorrect because of the
a location of the poles and zeros in the z-plane. The 1lo- '
cation of the poles and zeros are 7:1:’}
o
poles: 0.219+j0.976 zeros: 0.173+j0.979 :;
0.135+30.991 0.056 ;E
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& 0.0

which have been plotted in Fig 2.3.19. One of the biggest
g errors in this case is the location of the zero on the real
P axis. This is causing the amplitudes to be incorrect. By
- taking the Z transform cf the parametric model using <these
E poles and zeros, the time signal obtained is shown in Fig.
. 2.3.20. The envelope of the signal has seven periods in
%f the time shown. The normalized signal in Fig. 2.3.20 can
;; be written as

s(n)=O.54bcos(1.3499n—0.0h23)+0.469cos(1.&358n40.092h)
(2.3-4)

As a final case we chcse to have a TBW=0.359 with a noise
variance of ¢2=1.0. The short duration signal is shown in
Fig. 2.3.21. The spectrum of the signzl is shown in Fig.
2.3.22 where we see very broad peaks tnroughout with one
very broad peak where the two pulses should be. This broad
peak 1s made up of the two pulses smeared‘together because

of the very small TBW. Lookxing at it, one could not tell

that two pulses belong there. Therefore, to see where ggg
these two peaks occur we used our method to determine the NS
\'_-.:.'
coefficients of the parametric model. The resultant spec- AEND
[
trum is shown in Fig. 2.3.23. The normalized frequencies R
of the pulses are T)=0.2148 and 7,=0.2305. The second S
KON
estimate is incorrect bdut is the identical location found AN
e
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when the TBW=0.718 and the nolse variance was ¢72=5.O. By

'decreasing the TBW, our method did no worse than for the
second case investigated. The 1location of the ©poles and

zeros of Fig. 2.3.24 are

poles: 0.219+j0.976 zeros: 0.159+j0.978
0.122+30.992 0.277
OOO

By taking the inverse Z transform of the pole-zero model,

we found the normalized estimate of the signal to be

s(n)=0.608cos(1.3496n+0.1452)+0.404cos(1.4483n-0,1072)
(2.3-5)

which is plotted in Fig. 2.3.25.

2.4 Conclusion

We have shown a method to determine the location of two
frequencies when the time bandwidth product is small and
when noise is added to the signal whose variance 1is equal
to or greater than the power of the smallest cosine. The
method makes use of the representation of two impulses in
the z-plane which is used to obtain constraints for the

maximum and minimum values the coefficients of our para-

metric model can take. These constraints along with the

relationship these coefficients have in the spectrum, we
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used linear programming to solve the set of 1linear equa-

tions by minimizing the 1, norm. Once the coefficients
have been solved for we are able to ottain the normalized
estimate of the time signal by inverse Z transforming the

parametric model.

Four cases were used to simulate our method in showing how
affective it is. It was found +that by decrsasing the TBW
we obtained similar results to when a higher TBW was used
with a larger noise power. In the last case examined the
TBVW was so low that the two pulses in the spectrum smeared
together showing & very broad peak. Our method was able to
obtain a goocd estimate of the frequencies. The time es-
timate of the signal is different because the location of

the poles and zeros is not exact.
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Chapter 2

FIRITE TIIE-BANDWIDTH PRODUCT

HILBERT TRANSFORM

3.0 Introduction

When analyzing a process, one finds that under certain
circumstances, the real and imaginary parts of a signal are
related through a specific relationship, or the amplitude
and phase are related by that same relationship. In dif-
ferent disciplines, the relationships are known under
different names. In mathematics literature these relations
are referred to as Polisson's formulas [32], in optics they
are known as the dispersion relations [33], and in signal
processing theory the relations are called Hilbert

transforn relations.

The Hilbert transform is wused in the phase retrieval prob-
lem which arises when the wave phase is apparently lost or
impractical to measure and only intensity data is avail-
able. This situation occurs, for example, in electron
microscopy where the index of refraction structure of thin
films or the height distribution of a surface is to be

determined from the intensity distribution in the far
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field. The phase problem also occurs in coherence theory
[34], signal processing [35,36,37], antenna array design

[38], Fourier +transform spectroscopy [39], and design of

radar signals "[ﬁO].

If we are given a real signal f(t) that is square inte-
grable, and bandlimited to a frequency £, then the signal

f(t) can be represented as
f(t)=Re T(t)expjflt,

where

F(t)=2f,(t)exp-j ¢

and

fe(t)=1 fcoF(w)exp jwt dw

27 °°

By definition, the Fourier transform of f(t) is truncated
at w=-{1. That 1is, F(w) is identically zero for w<-f).
Multiplying f(t) by exp j 1t shifts the spectrum to the
right by an amount §l. The resulting complex signal has no

negative frequency components.
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. The preenvelope of a real signal f(t), is the complex-valued ~a
! function '
N
) RS
g; m(t)=£(t)+jT(t) (3.0-1) e
| at
Pro)

N The real signal is the real part of the preenvelope m(t). 3

~

B

.-
L]

r. The preenvelope 1is also called the analytic sigral. An

T
i

[}

£

it |

r, N

Lo

dqk

analytic signal has the property that <the envelope of £(t)
Ef is the absolute value |m(t)| of its preenvelope which is of 0
| use in modulation theory [ 35]. U
. E L:;
|
f” In (3.0-1) we have that the real and imaginary parts of o
i S *
\b
the signal m(t) are related by the Hilbert transform :?
i given by
3
~
A ~ © ' ‘ 2
% F(t)=1 Pf £(r) dr = H[£($)] (3.0-2) 3
| - N
' ” -0 t-7
c;-l :::'
1{; where P denotes the Cauchy principle value given by Q
b h
| o
i ‘-.-'; ~ . <O t-€ "-‘
£(t)=1 1im {[ f(¢) dr  + f(r) d't} ~;
(- — €=0 '.
) T -et-7T “ot-T (3.0-3) I:I
v,
E
Y -
: The frequency spectrum of f(t) 1is given by 1its Fourier "~
R "
PE' transform
.
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F(w)= F[f(t)]= f' f(t)exp(-j2mft)dt (3.0-4)
-0

and F(w) exhibits real-even, imaginary-odd symmetry be-

cause f(t) is real. The spectra of f(t) and £(t) are re-

lated through the relationshkip

F[f(t)] = -jsen(w)F(w) (3.0-5)
where

+1 , wa)
sgn{w)={ 0 , w=0 (3.0-6)

-1 , wsO

From this the Hilbert transformation of f(t) can be viewed

as f(t) passed through a -90° phase-shift network whose

frequency and impulse respeonses are

G(w)= -jsgn(w) (3.06-7a)
g(t)= 1/mt (3.0-7b)
Because G(w)= -1, we must have

f(t)= -H[T(tﬂ (3.0-8)

and f(t), T(t) are termed a Hilbert pair.
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The spectrum of m(t) is shown to have zero negative fre-
quency components by substituting (3.0-5) into the Fourier

transform of (3.0-1). This gives wus
M{w)=F(w)+jF[1(t)] (3.0-9)
or

M(w)= F(w)+j(-jsgn(w)F(w))

=F(w)[1+sgn(wﬂ (3.0-10)

For w less than 0, from (3.0-6) we see that the sign fun-
ction is -1 and the function M(w) disappears. For w
greater than 0, M(w)=2F(w), and for w=0 M(w)=F(0). This

can be rewritten as

2F(w) , w>0
M(w)={ F(0) , w=0 (3.0-11)
[ 0 , w<o

When the spectrum of M(w) is bandlimited to +§,M(w) van-

ishes for w>§l, and the finite energy Em of the signal is,

by Parseval's theorem =

-] 19 .
Im(t)2 dt = 1 j'|M(WXz dw (3.0-12)

-co — Jo 3

2m N

‘)
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Let z=T +jo define a complete variable. By inverse

Fourier transformation

)
m(z)= 1 .[ M(w)expjwt dw (3.0~-132)
- JO
2
w LY
= 1f M(w)exp-wo expjwt dw. (3.0-13b)
2m °

It becomes evident that given +the integrability and con-
vergence properties for the existence of the Fourier trans-
form that (3.0-13) must converge for any o=0. Therefore,
m(z) must be free of zeros in the wupper half of the

z-plane.
If we let m(z) be bandlimited to £, from (3.0-13) we have,

2 2 2
n(2)] =[1 f M(w) exp-w® dwl : (3.0-14)

——

2w

From the Schwartz inequality (3.0-14) becomes

. »S2 Q
|m(z)| = 1 fM(w) dw 1 exp-2wo dw
2m ° o
= Em l1-exp(-2Q0) (3.0-15)

Lo

-------




T

where Em is the finite energy given by (3.0-12).

This shows that m(z) is bounded everywhere in the finite
lower half and whole upper half of the z-plane. When i(z)
is bandlimited, then m(z) must be an entire funqtion. This
relationship does not depend on Dbandwidth 1limitations.
With =, (3.0-15) 4is finite for any o >0 provided that
m(t) is square integrable. A finite bandwidth insures that
the lower half plane singularities are at infinity. The
Hilbert transform can also be used to describe the re-
lationships between the modulus ]m(t)] and the phase ¢ (t)
of an analytic signal. It is assumed that M(w) is band-

limited. Equation (3.0-2) can be written in phasor nota-

tion as
m(t)= m(t) exp¢(t) (3.0-16)
where
Im(t)] =/£2(t)+F2(t) (4.0-17a)
¢ (t)= arctan £(t)/f(t) (3.0-17b)

By taking the complex logarithm of (3.0-16) we have

In m(t) = 1n |m(t)] + j(¢) (3.0-18)
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i . L
< in which the logarithmlic modulus and the phase are the real
! and imaginary parts of a time function. Certain conditions B
N
- . . )
have to be imposed in order for the Hilbert relation to ;::.-
r, XK
;:} hold between the modulus and phase. We first note that :::
In m(t) is not square integrable, and in generzl, m(t) — O =™
F as t —o and thus 1In n(t) —~e as t —o© . However, in
E" certain instances, we can modify m(t) by the addition of a
constant unit amplitude so that the modified function
g In(i+m(t)) is square integrable if lm(t)] is chosen to be
) less than one [ul].
f' Ancther way to avoid the problem is to study
i iIn'm(z)=d 1n m(z) (3.0-19a)
daz
S
é =1n' m(z)+j¢'(t) (3.0-19b)
=m'(2)/m(z) (3.0-19c)
R
E.',j From the Payley-Wiener theorem [42], if m(z) is entire and
4
square integrable along the real axis, and if M(w) is band-
F‘ -
e limited to £ ,then
&
o
o m(z)=0(exp( & |z|)) (3.0-20)
O
C.-_ -
: where 0 means "order of" defined as the maximum absolute _I'_';:‘
“~
E value. This means that the maximum absolute value of m(z) -
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is increasing exponentially with radius r=[z]. From this
we have that 1ln m(z) at worst will vary linearly with |z],
and In'm(t) must therefore vanish or tend to a finite con-

stant in the extremities of the z-plane.

Because m{z) is analytic, In'm(z) will have upper half plane
singularities only if m(z) has zeros in the wupper half

plane. If ln'm(z) is square integrable, we then have the

relationships
¢ '(t)= H[1n' m(t)] (3.0-21a)
In'|m(t)] = -H[ ¢ '(t)] (3.0-21b)

where m(z) must be zero free in the wupper half of the
z-plane. The relationship where the phase and magnitude
are related through the Hilbert transform is known as the
minimum phase condition where the phase displacement is the

smallest possible for its gain.

From (3.0-21) we can always calculate ¢ (t) and ln m(t) by
integration. The results obtained will generally not be
unique. In certain applications the fact that the solution

is not unique does not play a role in the solution [35].

The theory just descrived has been for analytic time sig-

nals whose spectrum has 72ero negative frequency
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components. A dual of this is a time =signal that has no
negative time components., It can be shown that the real
and imaginary parts of the spectrum are related by the
Hilbert transformn. Signals that have no negative time
components are termed causal. In cybernetics, a causal

signal that is also square integrable is called a wavelet

[37) .

The solution of the phase retrieval problem can either be
solved for by relying on the analyticity of the signal
where the Hilbert transform can be used, or a computational
procedure. In the case of what in optics 1is called a weak

object [43,&&] one has a signal F(w) given by

F(w) = 1+M(w) (3.0-22)
where
| M(w)] << 1.

With this condition we can approximate the real part of the

signal M(w) as

Re [M(w)] = 0.5(F(w)-1) (3.0-23)

and the imaginary part of the signal M(w) as
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Im [M(w)]= K [Re M(w)] (3.0-24)

As we can see we have to have the special condition that
the signal M(w) has a constant dc offset and the signal

magnitude is much smaller than the offset.

Another procedure 1is the apodizing technique. In this
technique, the function m(t) is modified so that the zeros
of the modified function are displaced so that their con-
tribution to the phase is diminished. The logarithmic
Hilbert transform can then be used to calculate the phase.
The apodization concept follows from considerations of the

pandlimited Fourier transforn [33]:

F(z)= er f(t) exp(-yt)cos(xt+arg f(t))dt

+

[N

b
J: f(t) exp(-yt)sin(xt+arg £(t))dt (3.0-25)

where z=x+]jy. If f(t) 4is made to decrease more rapidly,
near the lower 1limit of the integrals then larger x,y nust
be required. This means that a larger zero-free area about
the origin is created, by reducing the phase contributions
of the zeros in the lattice by having f(t) decrease more
rapidly near the edges of the window. This c-n be accom-

plished by multiplying £f(t) by a suitable filter.

Nakajima and Asakura [45] have used the Gaussian, sinc and
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triangular filters to perform the apodization which is a

multiplication of the autocorrelation of the signal with
the desired filter function. The autocorrelation is the

inverse Fourier transform of the magnitude in the fre-

guency domain,

As was already mentioned, it tecomes difficult to obtain
the phase from magnitude measurements if the function has
zeros in the upper half of the gz-plane. Procedures have
bteen developed to determine where in the upper half plane
the zeros occur so that they could be flipped into the
lower half plane. By accomplishing this flip, the mag-
nitude in the frequency domain remains the same. Nakajiﬁa
and Asakura [46] have devised a method to determine the
position of the zeros from the magnitude of the signal and
the magnitude of the Fourier transform of the signal.
From this along with the logarithmic Hilbert transform and
a nonlinear least-squares parameter estimation technique,

they have been able to determine the phase.

Gerchberg and Saxton [M7.48] were first to suggest the
use of both the magnitude of the signal and the magnitude
of the spectrum to obtain the phase. Misell [ 49] proposed
the use of the intensity distributions of two slightly
defocused images. In the Gerchberg-Saxton algorithm, at

each step the computed values of the intensity are cor-
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rected by combining with the measured values. Other sug-

gestions [50] for use of the magnitudes of the signal and
the spectrum have involved the sclution of algebraic equa-
tions which connect the sampled mnagnitudes in time and
frequency with coefficients of the discrete Fourier trans-

forms of the function.

Bates et al., [51,52,53] have obtained a simple algebraic
derivation to the phase problem, and have devised an easily
implementable algorithm. The algorithm works for images
that are weakly 1localized. What this means is that the

energy of each sample is slightly spread about the sample.

An alternative approach to phase retrieval problem is to
employ one of the gradient search methods. It has Dbeen
shown, [54], that one such method, the steepest-descent
method, is closely related to the error reduction algo-
rithm. Its one drawback is that it converges slower than

other gradient search methods that are available.

Much work has recently been done in reconstructing the
signal from its phase [60,61,62,63]. This is because it is
possible to relate the phase of a signzl to the signal
under certain conditions, which makes it easier to perform

than to obtain the signal from its magnitude.
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In this chapter we describe a2 new form of the Hilbert trans-
form which 1is based on finite time observations of a
signal., It will be shown that the kernei does not have the
inherent singularity that the regular Hilbert transiorm
exhibits. Ve will show that the modified Hilbert trans-
form has similar properties of the regular Hilbert trans-
form. The modified Hilbert transform will te wused with a
method that we call the method of partitioning to de-
termine the phase of a functicn given its magnitude. Nu-
merical results will be used to show how this new method

works.

3.1 Medified Hilbert Trancform

In section 3.0 we have shown the Hilbert relationship be-
tween the real and imaginary part of a =signal given that
the Fourier transform of the signal has no components on
the negative side of the axis. For this case the Hilbert

transform can be written in the form given by Papoulis

[55]:

©
R(w)=ia j.
T Jo

©
X(w)=:g‘/ (y) sinwt cos yt dy dt (3.1-2)
™ o [+

(y) sinyt cos wt dy 4t (3.1-1)

o 8 8
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where R(w) is the real part and X(w) is the imaginary part
of the complex signal. By looking at (3.1-1) and (3.1-2)
we see that the integrals are evaluated in Dboth the time
and frequency domains, and because of the even symmetry the

integrals are also evaluated for only positive values.

If we were to assume that the signal 1is observed in the
time domain for a finite time T, then in (3.1-1) and
(3.1~2), the upper limit of integration for ¢ 1is T. For
simplicity we will obtain the modified Hilbert transform
from (3.1-2) with the understanding that the procedure is

applicable to (3.1-1). With T as the upper limit, (3.1-2)

can be written as

@ T
X(W)=-2f R(y) f sinwt cosyt dt dy (3.1-3)
0 0

T
We see from (3.1-3) that the integral evaluated over t can
be evaluated to give the equation only in terms of w and y.

The integration gives us the following

-
2j.sinwt cosyt dt= l-cos(w+y)T - l-cos(w-y)T (3.1-4)

©

(w+y) (w-y)

which can be placed back into (3.1-3). Therefore, we have

from (3.1-3) and (3.1-4)
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:’ - X(w)=-_lf R(y)[l-cos(w+y)‘1‘ + 1-cos(w-y)Tldy. (3.1-5)
] y g
s . ° (w+y) (w-y) -
-
o If the complex signal is assumed to be bandlimited tc w=l
3 we can rewrite (3.1-5) as
- A
L fy)
. X(w)=-_1_f R(y) 1-cos(w+y)T dy
: r": T o o
;[ (w+y)
1 N
SO, -lf R(y) 1-cos(w-y)T dy (3.1-6) s
WA T Jo ]
o (w-y)
L where we have broken the integral into the sum of two inte- :
2 grals. The two integrals can be combined into one by
: i changing the variable in the first integral to give the :
‘. final result
..
: E a .'
b x(w)=-_1_f R(y) 1-cos(w-y)T dy (3.1-7)
TJa ;
~ (w-y) !
3 ET The above equation can also be written with different
- I limits of integration. It is seen that bYoth the variables '
) w and y take on the values
b
e .
) "Q=W=.Q. :
# \' .
&'A ..Q:y: Q.
K ‘ :
B

oy

E X
W, D)
)
L}
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If new variables are defined given by

w'=w/§2
y'=y/S

we can rewrite the inequalities as

-1=w'=1

_1=y'=1
With these new variables (3.1-7) can be written in the form

x(Qw-)=._1_f'R<.Q,y') l-cos QT(w'-y"') dy"' (3.1-8)
1 4

(w'-y")

A reason why one may be interested in this form of the
equation is that the time-bandwidth product is directly
incorporated into the equation. This is the form of the
transform we have termed the modified Hilbert transform.

From (3.1-1) we can go through the same analysis %o obtain

R(w)=-%fnx(y) 1-cos(w-y)T dy (3.1-9)
= (w-y)

R(Q w')=-_1_f'x(9. y') l-cos ) T(w'-y') dy’ (3.1-9b)
i (w'-y*)




Equations (3.1-7) and (3.1-9a) can be rewritten using tri-

ginometric identities as

x(w)=-_1_;l‘“R(y) sin20. 5T (w-y) dy (3.1-10a)
Ti-a 0.5(w-y)
s
R(w)=—l_f X(y) sin®0.5T(w-y) dy (3.1-10b)
o 0.5(w-y)

which if we take a closer 1look at the kernel, contains the

sampling function given by

sinc0.5Tw = sin0.5Tw/(0.5Tw) (3.1-11)

This sampling function is a consequence of the finite time
observation of the signal. We see that the modified
Hilbert transform is a convolution of a signal with a ker-
nel evaluated over a finite bandwidth. The difference
between the regular and modified Hilbert transform is the

kernel given by

K(w)= 1-cosTw = TsinO.5wTsincO.5wT (3.1-12)

w

which differs with the kernel of the Hilbert transform

given by
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DY)
a K*'(w)= 1/w. (3.1-13)

.

In (3.1-13) we see that the kernel has a singularity at w=0

e

where the function approaches infinity. For the modified

e 4

Hilbert transform kernel we see that in the l1limit as w

Y approaches to zero, the sampling function approaches one
‘v and the sine approaches zero giving the overall 1limit as
w Zero. The kernel of the modified Hilbert transform has
E} an envelope which is identical to the kernel K'(w) with

sinusoidal variations which makes it go to zero as w goes

to zero. In Fig. 3.1.1 we see the kernel K(w) for T=1 and

. f=12 where we have that w=27f{f, We see that for positive
E“ frequencies the kernel has only positive values and for
i negative frequencies only negative values as in the case
of K'(w). In PFig. 3.1.2 we have expanded a portion of the
Ej spectrum and evaluated the kernel for frequencies up to f=3
with T=1. From this and the previous figure we note that
g the majority of the energy is located in the 1lower fre-
E\,- quencies.
N
N
Q By a change in variables we can get the equivalent forms of
(3.1-10a) as
()
" X(w)=-1 sinc0.5(w+y)T sin0.5(w+y)T R(y) dy (3.1-14a)
._.: T Q
) =
. N .
g X(w)=-lf 8inc0.5ytsin0.5yT R(w-y) dy (3.1-14Dp)
- "
-2
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% which can be extended to (3.1-10b).

To evaluate the integral we replace the integral by a sum-

g VF mation to give us (3.1-10a) in the forn
$
fé o
J‘ '-: M+
‘. X(Ag)=-1 ¥ (1-cos((A;-A:)T) R(A/)A (3.1-15)
AN ™ JAVIAAY
¥ ta,
S
ve
S
W3 " where M is the number of intervals the integral is broken
fN into, and
1
RN
N
) ﬁ A = 20/m
. AJ = (j-1)A-Q
" $ Ai =(i-1)A- ﬂ: i.j=1'2,co..lﬂ (3'1_16)
N 'y
o

Using (4.1-16) we can rewrite (3.1-14) as

.
[-13 I

YT ENS
A

M+ ] o
- X(A; )=-1 '} (1-cos((j-1)AT)) R(4;) (3.1-17)
- T iz .
o F ‘ (j-1)
X
iz To rewrite (3.1-10b) the X and R need only be interchanged.
L)
b
§: ! As an example to show how this modified Hilbert transform
3‘4‘ i‘_‘.ﬁ evaluates the imaginary part from the real part of the

o

Fourier transform of a causal signal we have chosen our

.. -

»q
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signal f(t) to be a unit amplitude step for a duration T.

Therefore, we have f(t) given as

f(t)= {1 y 0=t=T

0 ,otherwise (3.1-18)
The Fourier transform of f(t) is given by

F(w)=0,5Tsinc0.5wTexp(-jO.5wT)

=0.5TsincC.5wT(cos0.5wT~jsin0.5wT) (3.1-19)
Therefore, if R(w) is the real part ¢ the signal given by

then the modified Hilbert transform should yield the im-
aginary part X(w) given by

X(w)= -0.5Tsin0.5wPsinc0.5wT (3.1.21)

In Fig. 3.1.3, the real part of the signal R(w) is given
by the solid line. It is seen to be an even function. To
obtain the imaginary part X(w), (3.1-17) was used with
M=256, T=1 and f=§/2w=12. The imaginary part is drawn
using a dashed 1line. To see how closely the result cor-

responds to the actual values, (3.1-21) was also drawn
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using a dotted line. We see that the actual and the cal-
culated imaginary part are overlapping, indicating that the
calculated function is identical to the actual one. As a
convenience for graphing, all of the functions will be
normalizing. The normalized constant is obtained by find-
ing the maximum . -olute value of the function and dividing
the function by .. is value. This assures us that the mag-
nitude of the function will always be less than or equal to
one. In Fig. 3.1.3, as will always be the case, the nor-
malizing constant KR for the real part of the signal is
given by 0.5, The nbrmalizing constant for the actual
imaginary part KI is given by 0.362, and the normalizing
constant of the calculated or estimated function, KE is
given by 0.360. From the normalizing constants KI and KE
we see again that the results obtained using the modified

Hilbert transform are very close.

In (3.1-16) we have that the spacing between samples is

A

2Q/M = bw £/M (3.1-22a)

or
A' = AJ2mr = 2f/M (3.1-22b)

From the sampling theorem for the Hilbert transform f[57].

B IPL T T R T R T e I T T AR P AR A

ooV,

'0

s YA AN 5 T



g I W

—
st

"-.';:‘ Yo l-Jc‘ LE -'ﬂ

92

we have that

A = 1/T | (3.1-23))
from which we can obtain an expression for the
time-bandwidth product TBP associated with the sampling
interval A'. From (3.1-22) we can deduce that the band-
width B is given by

B=MA'"/2 =f (3.1-24)

From (3.1-23) and (3.1-24) we have

f = M/2T (3.1-25a)

or
fT = M/2 4 (3.1-25Yb)

Equation (3.1-25b) states that if one is to sample accor-
ding to (3.1-23) then the time-bandwidth product is equal
to M/2. In the case where the time-bandwidth product is
less than M/2, the signal is being oversampled, and if the
product is greater than M/2, the signal is undersampled.
In speech analysis [58,5§]. for certain processing

techniques, one finds it necessary to oversample the signal.
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In the example of Fig. 3.1.3, the TBP=12 which tells us
that we are oversampling by 10.67 times. To test the modi-
fied Hilbert transform in how well it works for calcu-
lating the real part of the signal from the imaginary part
with identical constants as before, we use the negative of
(3.1-21) to see how closely our results match (3.1-20).
Fig. 3.1.4 shows the results where we see that the graph of
the actual real part of the signal given by the dotted line
and the graph of the calculated real part are overlapping.
The imaginary part of the signal 1is given Dby the solid
line, where for quick identification we note that the imag-
inary part 1is odd. The normalizing constants for  Fig.
3.1.4 are KI=0.326, KR=0.5 and KE the normalizing constant
of the estimate to the real part of the signal is 0.494,
With the shape of the estimate being identical to the shape
of the actual signal, and having the normalizing constants

in close agreement, we can say that the estimate is exact.

In the above examples the bandwidth of the signal was taken
to be 12, This bandwidth gave us the limits of inte-
gration, and we observed that the calculated estimates of
the real and imaginary parts of the signal were almost
identical to the actual values. To see what effect re-
ducing the bandwidth would have on our solution, we next
chose to have the bandwidth f=3. Again we have M=256 and

T=1, The TBP here is given by 3 so that we are oversampling
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(ﬁ close to the actual values because in this region the con-
- volution involves the main lobes of the functions which
51 have enough energy to produce good estimates., In this
. situation, we notice that the sampling interval or con-
é; sequently the TBP did not have an effect on our results.
g: It was our choice of bandwidth that caused the smearing at
= the edges.

b
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by 42.67 times, Equation (3.1-20) was used as the input

and we wanted to see how closely our results wusing the
modified Hilbert transform would be to (3.2-21). In Fig.
3.1.5 the solid 1line 1is the function given in (3.1-20)
with KR=0.5. The dotted line is the actual solution which
is given by (3.1-21), and its normalizing constant 1is
KI=0.362. The solution obtained by the modified Hilbert
transform is shown by the dashed line with the normalizing
constant given by 0.356. We notice that at the edges of
our window, the estimate does not correspond to the actual
values. This phenomenon is éapsed by the windowing. The
real part of the signal does not have all of the energy or
most of the energy concentrated in the region up to f=3.
The same can be said for the kernel of the transform which
we have shown in Fig. 3.1.2. By taking the convolution of
this signal with the kernel over such a small region, the
effect is to produce smearing at the 1limits of inte-

gration. The esimate about the origin is seen to be very
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The next example that we wanted to choose was a causal
signal that-rwould have all of its energy in the short time

that it would be observed. For this we chose
f(t) = 12exp(-6t)us(t) (3.1-26)
where

ur(t) ={ 1, 0=t=7

0 ,elsewhere

The Fourier transform of (3.1-26) is calculated to be

F(w) = 12(1 - exp-(6+jw)T) (3.1-27)
' 6+jw

By choosing T=1, the magnitude of the exponential is

2.48x107® so that (3.1-27) can be approximated by

F(w) = 12
6+ jw
= 72 -3 12w . (3.1-28)
36+w2 36+w2

With this choice of T, we find that 99.9% of the energy is

in the signal. This satisfies the condition that we wanted

o] eSS
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(e for our signal, in that most of the energy 1is contained
" in the signal for the short time that it is observed. Next
i we wanted to calculate the bandwidth so that 95% of the
gi energy be contained up to that frequency. The energy in
» the frequency domain is given by

t

gi E = (2/w )arctan(2w £/6) (3.1-29)
~

TN
A

The signal in (3.1-26) has been normalized so that its

total energy equals one. Therefore, from (3.1-29) we find

| PO

that for f=12, 94.9% of the energy is contained in that
part of the spectrum. Using the real part of (3.1-28) we

A——
[ AN L]
2 s’

wanted to see how well the calculated imaginary part is to

. the actual values. With M=256, f£=12 and T=1, Fig. 3.1.6

shows the results obtained. The solid 1line is the real
Ej part of (3.1-28) with a normalizing constant KR=2.0. The

actual imaginary part shown by a dashed line, overlaps to
'. look as if the graph 1is one solid line.  The normalizing
t constants are KI=1,0 for the actual plot and KE=1.0 for the
- estimate plot. We see that the modified Hilbert transform
g? gives exact results if the limits of integration are chosen
” such that most of the energy of the signal is located be-
é; ' tween the 1limits. From this example we can assume that
g the bandwidth can be chosen so that 95% of the energy is
& located in that region. This way the integration does not
E; have to be done over the entire frequency spectrum.
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In the next section we will use the logarithmic form of the

modified Hilbert transform to evaluate the phase of a
signal from its magnitude. We will also show a new method
of partitioning the spectrum to obtain better estimates of

the phase.

3.2 Phase Retrieval Problem

In section 3.0, we discussed how for a signal m(t) there
exists a relationship between the real and imaginary parts
of the complex logarithm of m(t). If m(t) is bandlimited,

and it can be written in phasor notation as

m(t)= |m(t)] expje (t) (3.2-1)
then by taking the complex logarithm of (3.2-1) we have

In m(t)= In|m(t)] +j¢ (t) (3.2-2)
The ln|m(t)] is the real part of the signal and ¢ (t) is the
imaginary part. From this we then have that the phase ¢(t)
is related to the log of the magnitude by the Hilbert trans-

form. In the notation of the modified Hilbert transform we

have
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I ¢ (w)= ._1_'[ In]A(y)]| 1-cos(w-y)T dy (3.2-3) ¥
t . ™ .
. -2 W=y
B :
) Ej The above equation relates the phase of the spectrum with

the magnitude of the spectrum when the time signal is

causal and real. If we are dealing with an analytic sig- R

nal, where the spectrum is real and contains only positive

Lo
L]

frequency components, then the logarithnmic modified

Hilbert transform is given by .

'_'1;5:!’
»

.
: & b (t)= -1 .I‘Tlnlm(r)l l1-cos(t-T) ar (3.2-4) X
Tl t-7 }

LY .

As an example we will use the one-sided exponential pulse

-
[

given by (3.1-22). As a matter of convenience, we rewrite

¥
-

the Fourier transform of this signal when T=1 as

A

F(w)= 12 (3.2-5)
6+ jw

.,
]
LR )

3

N
v

The magnitude and the phase of (3.2-5) can be calculated

f-E: to give ;
i

b [A(w)] =12/(36+we ) (3.2-6a)

{ ;g ¢ (w)= arctan(-w/6) (3.2-6b)
(o ;
3 3
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From (3.2-6a) we notice that the magnitude approaches zero
when w approaches infinity. This tells us that the 1log of
the amplitude 1is not square integrable as is the necessary
condition for wusing the 1logarithmic form of the Hilbert
transform in determining the phase. In the limit as w goes
to infinity we have that the log of the magnitude also

goes to infinity, and we get

@© »
f |inja(w)]|®aw — (3.2-7)

(= o]

In the previous section we found that if f is chosen to be
12, that 94.9% of the energy is included in the spectrum.
It is with these limits that we would like to determine the
phase when using the 1logarithmic modified Hilbert trans-
form. If we take the bandwidth of the signal to be 12 we
have that with =2wf

fn] lnlA(w)Hz dw < @ (3.2-8)
-0

because within these 1limits the log of the magnitude never
goes to infinity. By this we have Dbandlimited the signal.
In Fig. 3.2.1, the solid 1line represents the log mag-

nitude, with a normalizing constant given by KR=1.841., The

dotted line 4is the phase given by (3.2-6b) with a nor-
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malizing constant KI=1.491. The estimate of the phase
using ¢the logarithmic modified Hilbert transform is shown
with the dashed 1line. Its normalizing constant is given by
KE=2.561. From this figure we see that the estimated
phase is incorrect. There are two reasons why the estimate
is incorrect. The first, which 1is hardly noticeable 1is
that we have bandlimited the function so that there may be
some smearing of the estimate. The second reascn which is
the major one 1is that the magnitude has a pole in the upper
half of the z-plane. This can be seen if the log of the

magnitude is written as

In A(w) =0.5 1n (144/(36+w2 ))
=0.5 1n (144/(6+jw)(6-jw)) (3.2-9)

From this we see that a pole occurs at w=j6 which is in the
upper half of the z-plane. It is because of this pole
that the function is not square integrable and 1leads to

such poor results.

In Fig. 3.2.2 we have decided to evaluate the phase of the
same function as before for a bandwidth of f=0.1. The
horizontal 1line is the log of the magnitude in that region
with KR=0.693, and the actual phase and estimated phase are
superimposed over each other. The normalizing constant

for the actual phase is KI=0,104 and for +the estimate
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KE=0.082. The estimated phase is close to the actual val-

et
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e e Tl

ues. Fig.3.2.3 shows the results when the Dbandwidth is

increased to f=0.5. The so0lid 1line is the 1log of the

" -
LI
. |

magnitude with KR=0.693, the dotted 1line is the actual

o
ST
14
s "«

phase with KI=0.482, and the estimate of the phase is given

by the dashed line with KE=0.520. increasing the band-

By

width of the signal we see that the estimate is less accu-

Pl
. é) rate because the pole 1is having a 1larger effect on the

® results. In Fig. 3.2.4 we have further increased the band- :
i C'.

width to f=2.0 with the solid 1line representing the 1log

with KR=0.693, the dotted line representing the

magnitude

actual phase with KI=1.125, and the estimate given by the

dashed line with a normalizing constant KE=0.473. We see

AP2PILY
g S
S

A

that here there is a very large error between the estimate

and the actual value because of the

pole. In order to

ks improve the results, methods must be introduced +that will

reduce the effect of this pole.

MATHEMATICAL FILTERING METHOD

With the method described by Nikajama and Asakura [46] we

will attempt to obtain a better phase estimate by first

A A A Gl

preprocessing the magnitude, wusing the method where the

magnitude squared is smoothed by convolving it with a

filter. The filter we have chosen is the Gaussian filter,

with the

understanding that there are other filters which

....................
""""""""
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could have been used such as the triangular or low-pass

The Gaussian filter used has zero mean and vari-

filter.

ance o©%, Its form is given by

G(t)=exp(-t% /2 o2 ) (3.2-10)

In Fig. 3.2.4 we saw that the estimate of the phase is

error, and it is in this region that we wish

very much in

to improve the estimate. The magnitude was first smoothed

by the Gaussian filter with variance o¢2=4.0. The resultant

. E; log magnitude is shown in Fig. 3.2.5 by a solid line with a

normalizing constant KR=2.461, We note that the smoothing

has raised the log magnitude above zero and has made the

‘ ii function constant over a larger portion before it began to ;

roll off at the edges. The actual phase is given by the

o r: dotted line with a normalizing constant KI=1,125, and the

. estimated phase given by the dashed line has KE=2.390. We

2
vt

see that the estimated phase 1is beginning to approach the

actual phase in its shape. In our next attempt the vari-

» et

| =

ance of the filter 1is lowered to o2 =0.5. The log mag-

. g; nitude after the smoothing 1is given by the solid line in f
f ) Fig. 3.2.6 with KR=2.133. The actual phase is given by :
b Ez the dotted line having the same KI as before. The dashed "

P (s line which is the estimate of the phase has a normalizing -

constant of KE=1.981. The shape of the estimate has not E

changed from the previous case, but the constant has de-

----------------------
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& creased towards the desired value. After changing the li‘
!I variance to 0%=0.01 the estimated phase is very close to o
o
the actual phase. Fig. 3.2.7 shows the log magnitude giv- e
g
s . "..
= en by the solid line with KR=1.161. The estimated phase -
6 NS
given by the dashed curve 1is seen to follow closely the .
E? shape of the actual phase curve given by the dotted 1line. -
,. The normalizing constant for the estimate is KE=0.821 as ;?
ey .j,_-
e compared to the constant of the actual phase given by G
G: KI=1.125. The constants are close enough that we wanted 5:

-4
“l

to see how the real and imaginary parts of the spectrunm

CAl4

using the estimated phase, compare to the spectrum when the

actual phase is wused. Fig. 3.2.8 show the real part of

[ orae)
AL

the spectrum. The dotted line is the actual signal and the

TR SRR 4
"l. l-'.u..l' ., .[ -{5‘

-

ii dashed line is the one obtained when the estimated phase is -
19

used. In both cases the normalizing constant is given by g

? 7.389. The imaginary part of the spectrum is shown in Fig. f;,

o
) !

3.2.9. The dotted line is the actual curve with a nor-

¥

;
.
d

malizing constant KI=2.97 and the dashed curve is the es-

AR

timate with KE=2.46. In Fig. 3.2.10 we show the Fourier

. v

AN
oy,
X

transform of the estimated spectrum to see how closely it

. relates to the actual exponential signal. As can be seen, 5\
\° oy
the dashed line which represents the estimate is in close N

- * “a
. agreement to the actual exponential signal. The method ;;
v just described 1is used before the estimate 1is obtained. =
2 ‘
W Next we would 1like to discuss a method to wuse after the SE
. -
gg phase has been estimated. -3
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CORRECTION FACTOR METHOD

In a paper by Ford [56] a correction factor can be found

if the assumption is made that
|$(w)-Bl<e w>Q (3.2-11)

What this assumes is that for |w| > {l, the phase can be
represented by a constant with only a small error in the
assumption. In the case of the exponential signal, we
have seen that the phase of the spectrum becomes constant
as it approaches f=12. Therefore, we will use the samne

method as Ford to obtain a similar correction factor.

Using the modified Hilbert transform we can write the

phase ¢ (w) as the sum of three integrals given by

- Ly
4><w>=-1_f‘?<(w.y>¢<y> ay 'if k(w,y) 1n|a(y)] dy
_ mJ_

Td-o o

-}_me(W.y)cﬁ(y) dy = I,+ Ip+Is (3.2-12)
TI2

where K(w,y) is the kernel given by
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K({w,y) = 1-cos(w-y)T (3.2-13)

w-y

If we make use of (3.2.11) we can rewrite the integrals I,

and Is as
<O
Il(w)=-Bf 1-cosz dz (3.2-14a)
m (qu)TZ
(w52
I5(w)=-B f' Tcosz dz (3.2-1LDb)
Td-o 2

It can be shown that because of the odd symmetry of I;(w)
and Ig(w), that (3.2-14) can be written in the form
~(w-SUT
I, (w)+1;(w)=-gf l1-cos z dz (3.2-15)

T
(w-S2yr 2

which is the correction factor to be édded to (3.2-3).
Equation (3.2-15) has no closed form solution so that the
integral has to be evaluated using numerical methods. In
Fig. 3.2-11 we have evaluated the integral with B=1 and
T=1 up to f=12.0. In Fig. 3.2.12 we have added the correc-

tion factor to the phase estimate where the normalizing

constant of the estimate is KE=1.355 as compared with the

actual KI=1.491, We see that up to £=3.75, we have been
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able to almost have an exact estimate. This tells us that
the correction factor is good only in the region where
there is a constant slope. Once the slope tends to zero,
the factor is of no use. This is what is observed in Fig.
3.2.12, that in the region where the slope was getting
smaller, the correction factor was wunable to improve the

estimate.
METHOD OF PARTITIONING

The method to be described here is based on partitioning
the spectrum into small intervals and estimating the phase
for that small interval, Once all the estimates have been
obtained for each interval, they are combined to form +the
total estimate. If we were to take a look again at Fig.
3.2.2 we would see that in the region up to f=0.1 we were
able to obtain a close approximation of the phase. Based
on this we want to break the spectrum into intervals whose
spacing is £f=0.1. VWhat we intend to do is to shift the
log magnitude of that interval down to the dc, and eval-
uate the modified Hilbert transform to obtain an estimate
of the phase, and afterwards shift the estimate back into
the proper interval. In Fig. 3.2.13, we have shifted the
log magnitude of the Fourier transform of the exponential
signal between f=,1 and f=.2 to the dc and because of the

overlap at f=0, we have made it equal to zero. (We found
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that had we added the overlap at =0, we would have ob-
tained the same vresults.) By using the modified Hilbert
transform we obtained an estimate whose slope of the line
is close to the actual value. The slope of the estimate is
0.081 as compared to 0.102 of the phase in the interval
f=,1 to f=.2. 1In Fig. 3.2.14 we have taken the interval
f=2.0 to f=2.1 and shifted it to obtain the phase. The
slope of the estimated phase is 0.073 and the actual slope
is 0.019, We see that the estimate 1is increasing more
rapidly. Fig. 3.2.15 shows the results when the interval
taken was between f=6.5 and f=6.6. The slope of the esti-
mate is 0.032 as compared to the slope of the actual phase
of 0.002. We see that the slope of the estimate follows
the phase of the actual phase for the lower frequency inter-
vals. In Fig. 3.2.16 we have taken the region to f=1.0 and
divided it into 10 intervals, each of which had its log
magnitude shifted so that the phase could be determined.
Once the phase was determined, it was shifted back to its
orginal interval and added to to the previous results. We
have the slope of the estimate given by 0.804 which is very
close to the actual slope of the phase of 0.808. Ther-
efore, we have that in the case of a spectrum that contains
a pole in the upper half of the z-plane, this method has

given good results in estimating the phase when using the

modified Hilbert transform.
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PERIODIC ANALYTIC SIGNALS

In this section we would like to take a look at a special
class of signals known as periodic analytic signals. These
signals are periodic and have the property that the spec-
trum contains components for positive frequencies only.
This 1is the dual of causal time signals. We are given a

time signal f(t) that can be written in the form

£(t)= 'I'j' (1-a:; expi( Nt-8, )) (3.2-162)
= goc. exp jkfit (3.2-16Db)

In (3.2-16b) we recognize this to be the Fourier series
representation of the signal f(t). The fundamental fre-
quency is given by §I and we see that the signal f(t) has
a bandwidth given by nfl , and that the signal is repre-
sented in terms of only positive frequencies. Equation
(3.2-16a) is a factored form of (3.2-16b) from which the
location of the zeros can be obtained. The reason why the
zeros of f(t) are of interest is because in order to obtain
the phase of f(t) from its magnitude, all of the zeros must
lie in the lower half of the complex 2-plane. Once the
signal has been factored, all one has to do is to check the
magnitude of a;. If the magnitude of a 1is less than one,

then the 2zero of that term, z;, is in the lower half
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plane. To see just where the zeros are located, we first :
' consider when a 1is positive with 2 magnitude 1less than ,
one. Then the zeros are located at '.::;
2 :
z =2mwn+8, + j 1n |a,| (3.2-17) !
g Q Q ¥
>
{i >
b where we see that since the magnitude is less than one, the £
(3 log will be negative and the zeros are in the lower half ._
- N
plane. We notice that the location of the zeros are peri- :'.::
f : : : : : =
- odic. If the value of a 1s negative and the magnitude is 3
: less than one, the zeros are located at Z:_-:
< “~
. 0,
~ >
n
i z; = 2w (n+1)+8, + j 1n |a;| (3.2-18) -
9} Q .
& 3
- -
(G "
again showing that the zeros are periodic and 1located in -
P the lower half of the z-plane. -I~j-
. L%
%
’
- Let us examine the case when n=1. We have that the signal -
“— f(t) is given by o
¢ . 2
& £(t)=1 - a expj(§)t-4) (3.2-19)
~
- :
N from which we obtain the magnitude and phase as ::
be
oy
(g -
N
;'.' F“
& %
:1 i,.
Y ::-
"
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l£(t)I* (1+a®)-2a cos(t-6) (3.2-20a)
¢ (t) = arctan - a sin(1t-8 ) (3.2-200b)

1 - a cos(ft-8)

Using the magnitude of (3.2-20) and the Hilbert rela-
tionship of (3.2-4) we want to obtain an estimate of the
phase given by (3.2-20). The constants that were used are
a=0,2, T=0.5 and f=1.0 with M=256. The results are shown
in PFig. 3.2.17. the so0lid line is the log magnitude with a
normalizing constant given by 0.233. The actual phase is
shown by the dotted line with a normalizing constant of
KI=0.201. The estimated phase is shown by the dashed 1line
with KE=0.201, We can see that the estimate is a good one

with the graph almost identical to the actual graph.

In the next example we wanted to investigate the case when
n=2 and the coefficients a; are both equal to 0.2. Ther-

efore, we have
£(t) = (1 -0.2 exp(jflt))® (3.2-21)

The bandwith of this signal is 2 Q. For the choice of
f=1 and T=12, the resulting phase is obtained in Fig.
3.2,18 which was obtained by taking the magnitude of
(3.2-21) and using (3.2-4), The actual phase is given by
the dotted line with KI=0.,403 and the dashed line is the

AT fod i

>

a

2

.
4

]

v
[
v'..
.._‘
‘A
V




4

€«

NN NX

4 f e,

rd
TaT Nty

-

lr‘"

.
¥

Carth

111

estimated phase with KE=0.416., We again see that the es- |
timated phase is close, and all because the 2zeros of the
function are in the 1lower half plane, which makes it possi-
ble to use the logarithmic Hilbert transform for the deter-

mination of the phase.

In the previous cases we were :investigating the signal
given in (3.2-16). We next would like to take a 1look at

the following type of signal

f(t)=exp(-jfit) - a exp(-j8 ) (3.2-22)

One difference in this form of the signal 1is that rather

than f(t) having a periodic set of zeros, there is only one

given by
z= @ +j 1nlal (3.2-23)
Q (9}

if the constant a is positive, and

z= 8- + j 1nlal (3.2-24)

Q Q

if the constant a is negative, If we look at the mag-

nitude and phase we have

f(t)=(1+a? )-2a cos(Nt-8) (3.2-25a)
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¢ (t)=- arctan sinflt - a sin@ (3.2-25b)

cos fit- a cos@

The first thing that we notice 1is that the magnitude of
(3.2-25) is identical to (3.2-20a) but that the phases are
not the same. By choosing [a[<1 we should be able to
obtain the phase from the magnitude by using the Hilbert
transform. But we have already seen that by wusing
(3.2-25a) the phase that we obtain is given by (3.2-20b)
and by (3.2-25b). To see what is happening we have to
look at the Fourier transform of (3.2-19) and (3.2-22).
The Fourier transform of (3.2-19) has two impulses that are
on the positive side of the spectrum and (3.2-22) has two
impulses that are on the negative side of the spectrum.
Therefore, we see that we are unable to use the
phase-magnitude relationship for (3.2-25) because of the
position of the spectrum it occupies. Equation (3.2-22)

can be rewritten in the form

f(t)=exp-jt(1 - a expj(Qt-8)) (3.2-26)

where the bracketed term is the same as (3.2-19). There-
fore, to obtain the phase of (3.2-25b) we must first modu-
late the signal of (3.2-22) so that is in the positive side
of the spectrum. After this the phase of the signal can be

obtained wusing the logarithmic Hilbert transform. Once

AR DY S AR I N LA LA LN RIS TGY = ATy,
; 4 2 2 \.., (X =y o
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o the phase is found, the 1linear phase -§lt is added so that
' ! we obtain the phase of (3.2-25).

*Q 3.3 Conclusion

&~
o
: e We have shown a new form of the Hilbert transform, which

S has the property that it possesses no singularity. It has

been applied to determining the phase from the magnitude of

; gi the special class of signals that have no zeros in the

] ‘: upper half of the z-plane. To improve the estimates be-
: cause of poles, we have used smoothing, a correction fac-

i “ tor, and a new method of partitioning. One advantage of
d h' the new transform is that in evaluating the convolution we
.f ii do not use the fast Fourier transform. The reason for the

advantage 1is that in evaluating the convolution using the

fast Fourier transform, the frequency spread of the func-

o Jom—
LY
F

tion may exceed the frequency domain defined by the inverse

of the sampling distance, and as a consequence the desired

Fourier transform of the function is distorted. Thus the

MR
Tol o
2%

evaluation of the convolution yields a large error.
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Fig. 3.1.2 Modified Hilbert transform kernel with
TBP=3.,
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Fig. 3.1.4 Estimated real part using the modified
Hilbert transform with normalizing constants

KR=0.5, KI=0.362 and KE=0.494,
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Fig. 3.2.1 Estimate of phase from magnitude
measurement of the Fourier transform of the ex-
ponential signal with normalizing constants

KR=1.841, KI=1,491 and KE=2.561.
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Fig. 3.2.2 Estimatéd ﬁh;;é-mof
exponential signal for TBP=0.1
KI=0.104 and KE=0.082,
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Chapter &4

SUMMARY AND EXTENSIONS

4,0 Introduction

PBLE P P

KA

A new method of resolving two frequencies spaced closely

e
O

together buried in noise has been presented. The method

b s e’
L}

L involves knowing certain information about the signal a
P priori. This information was used to give a set of equa-
7w tions where there are less unknowns than there are equa- X

tions. Since the system of equations is overdetermined,

e

5 there are many possible solutions. We have selected the )

& iz".‘

solution vector which yields the minimal norm of the resid-

ual error. By so doing, we were able to resolve the two

()
.

. N frequencies of the signal beyond the 1imit imposed by the

uncertainty principle of signal processing.

Tl
v ¥,
13
« 20
s % 5

A second topic that was discussed is a new form of the

Hilbert transform. An advantage of this new form is that

it takes into account for signals that have been observed

LK for short time durations. One use of the Hilbert transform b

AN

is in phase estimation from magnitude measurements. This

.y W
. 0 .

t
:1\» .
Y

can be accomplished if the signal is causal and has zeros L

T,

that occur only in the lower half of the complex z-plane.
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gz If zeros occur in the upper half of the z-plane, methods 2’

have to be introduced to reduce the effects of the zeros ﬁ
!l on the phase estimation., A new method for estimating the R
E} phase was shown where the spectrum is partitioned. All ;
N ~

methods were demonstrated via computer simulations.

l(.‘\

The first chapter of this thesis contains material of an

introductory nature. In Chapter 2, a new method of resolv- - >

ing two frequencies spaced closely together when the

P
ettt
v e v e

time-bandwidth product is very 1low was presented. The

method was shown to give favorable results under low

signal-to-noise ratios. In the process of resolving the

F,

~ .

&: frequencies, we obtained an estimate of the time signal. L

»

.~ In Chapter 3, we introduced a new form of the Hilbert trans- §
4 >

form, With the new form of this transform we showed how

the phase can be estimated from the magnitude of a signal,

i

LN

Y e A,
TR

given that certain conditions are met. When these condi-

1S

tions cannot be met, modifications have to be performed .

” before or after the estimate is obtained. E
E :

& 4.1 Extensions of Methods R
b .
:

E: There are many extensions that can be applied to the meth- .
ods discussed in this thesis. In the case of spectral o

(o e
[ .
g estimation, if it is known that there are three or more f

-
(]

frequencies 4involved, then it is possible to obtain a set
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of equations, and constraints on the solution vector in an
identical manner as was described in Chapter 2. In
two-dimensional signal processing such as 1is found in
optics, When the two-dimensional signal is seperable, it
is posible to use this method on each dimension to obtain
better resolution for impulsive type spectra. This can
be further investigated to be used for image enhancement
of electron-microscope 1images, bandwidth compressed video
images, and image enhancement of medical diagnostic im~

ages.

For the modified Hilrtert transform, the fermulation can be
extended to n-dimensions if the signals are separable in
each dimension. If involved with superresolution, methods
can be developed that will wutilize some superresolving
methods to obtain a superresolving Hilbert transform. This
could be used as a constraint for the estimation of, causal

signals that have reduced time-bandwidth products.
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APPENDIX

Suppose we are given a set of data points

a8

c{(i), 1=1,2,3,¢0¢4ym (1)

IR
EAP

Y

and a model depending upon certain parameters x

ey
fetetd

d(i,X). i=1,2,3,c6eym (2)

EA ,u '..l m

where x 1is a column vector containing n elements and we

have m>n. A way of measuring how far the model is from the

o

data for any choice of x is defined as the residual f(x),

and is a function of x, d4(i,x), and c¢(i). Each of the

o0

c(i) 4is a real number, the d(i,x) are real-valued functions

~®

of x and f is a real-valued nonnegative function. The

data-fitting problem consists of selecting the parameters

X so as to minimize f. These problems have more structure

than do general minimization problems because f is often of

a form such as

'EJ&'~

f(x)= ? r(c(i)-d(i,x))

B
. f(x)=m§x r(c(i)-da(i,x)) (3)
8§ for some, simple, nonnegative function r(.). Eq
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This data-fitting problem is linear if d(i,x) has the form
d(i,x)=Dx (4)

where D is an mxn matrix. If all x are feasible for con-
sideration in finding the minimum of f, the problem is
unconstrained. If the x are restricted to lie in some set
S, then the problem is constrained. A common way to spec-
ify such feasible sets S is through the use of equalities

and inequalities

p(3sx)=aq(j) » j=1,2,...,1
{x‘g(knx)=h(k) R k=1.2,....1} (5)

As an example of such problems one may have (4) where £

involves summation with r(.)=( )2. This leads to the

familiar linear least-squares problem
min f(x)= |Je-Dx}}] = z (c(i)-Dx)Z. (6)

This problem becomes a linearly constrained problem if,

for example, the elements of x must all be nonnegative.

If one was to restrict oneself to completely linear prob-

lems in which r=].| , then this would involve 1; and lg

data-fitting. The least-squares (1l ) criterion for meas-
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uring the fit of a model to data is the most reasonable one
to use if it is known that the data c(i) are approximations

to certain quantities c¢'(i)
c(i)=c'(i)+e(i) (7)

where the errors e{(i) are all normally distributed with
zero mean and common variance. This is the case when the
c(i) result from careful, bias-free observations of well
behaved systems. However, if this is not the case then two
other situations are very important:

(1) the observations are not always careful or
bias-free, or the system is not always well-behaved (1, ),.

(2) the measurements are exact, and all errors are =zero
(leo).
In (1) there may be occasional errors e(i) which are quite
wild. It is desirable to ignore the corresponding observa-
tions and fit the model only to the good data. In (2), it
is desired to get the model evenly close to every one of the

observations c(i). The 1, norm can be expressed as
£(x)= ¥ |e(1)-Dx|= [|e-Dx]], (8)
and the 1l o norm can be expressed as

f(x)=max | c¢(1)-Dx|=[[c-Dx|| , « (9)
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- The former case is of interest to statisticians (as robust

)

regression) and the latter case to mathematicians (function

approximation).

?:.7‘ KA

To see the difference between the three norms, Fig. (A.1)

shows observations made of a 45° 1line over a unit square.

X

If these observations are subject to minor random fluctua-

> tions, and if an attempt 1is made to fit the observations

>~
LAy

with a straight line, the 1 , 12 , 1 norms result in

o

approximately the same solution as seen in Fig. (A.1). On

the other hand, if one of the observations is widely at

OEls
s Al

odds with the others, then the 1, line will not be dis~

turbed, the 1z line will be displaced somewhat towards

X

the wild point, and the 1o 1line will be centered between

r

the wild point and the remaining ones as shown in Fig.

-,

5?:—1*

(A.2).

L&

It is for these reasons that the solution to the problem of

LAY

section 3.1 will be solved for using the 1, norm. The

data c¢(i) is very noisy causing wild fluctuations in the

3

data, and it is the 1, norm that will fit the model to

the good data only.

The linear problem of section 3.1 can be written in the

form

g A
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g minimize 2. (c(i)-Dx)
subject to Px=q
Gx=h (10)

B 5

whose solution can be arrived at using 1linear programming.

Since the solution x and the residual need both be negative

TR
a 4 2

as well as positive, and because linear programming gives

only positive solutions, 3m additive variables must be

oK)

introduced. This gives us

c-Dx+dy=v-u

R

x=20

A
«

4

o

v20

gﬁ u=0 (11)
>

- so that (10) can be written as
f::

3 minimize > u+v

- subject to Px-Py =q

: Gx-Gy =h

i Dx~-Dy-u+v=c (12)
7

which can be solved by a method such as the simplex method.
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